Package: NeuralEstimators 0.2.0
NeuralEstimators: Likelihood-Free Parameter Estimation using Neural Networks
An 'R' interface to the 'Julia' package 'NeuralEstimators.jl'. The package facilitates the user-friendly development of neural Bayes estimators, which are neural networks that map data to a point summary of the posterior distribution (Sainsbury-Dale et al., 2024, <doi:10.1080/00031305.2023.2249522>). These estimators are likelihood-free and amortised, in the sense that, once the neural networks are trained on simulated data, inference from observed data can be made in a fraction of the time required by conventional approaches. The package also supports amortised Bayesian or frequentist inference using neural networks that approximate the posterior or likelihood-to-evidence ratio (Zammit-Mangion et al., 2025, Sec. 3.2, 5.2, <doi:10.48550/arXiv.2404.12484>). The package accommodates any model for which simulation is feasible by allowing users to define models implicitly through simulated data.
Authors:
NeuralEstimators_0.2.0.tar.gz
NeuralEstimators_0.2.0.zip(r-4.5)NeuralEstimators_0.2.0.zip(r-4.4)NeuralEstimators_0.2.0.zip(r-4.3)
NeuralEstimators_0.2.0.tgz(r-4.5-any)NeuralEstimators_0.2.0.tgz(r-4.4-any)NeuralEstimators_0.2.0.tgz(r-4.3-any)
NeuralEstimators_0.2.0.tar.gz(r-4.5-noble)NeuralEstimators_0.2.0.tar.gz(r-4.4-noble)
NeuralEstimators_0.2.0.tgz(r-4.4-emscripten)NeuralEstimators_0.2.0.tgz(r-4.3-emscripten)
NeuralEstimators.pdf |NeuralEstimators.html✨
NeuralEstimators/json (API)
# Install 'NeuralEstimators' in R: |
install.packages('NeuralEstimators', repos = c('https://msainsburydale.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/msainsburydale/neuralestimators/issues
Last updated 11 days agofrom:6f5cb0dbad. Checks:8 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 03 2025 |
R-4.5-win | OK | Mar 03 2025 |
R-4.5-mac | OK | Mar 03 2025 |
R-4.5-linux | OK | Mar 03 2025 |
R-4.4-win | OK | Mar 03 2025 |
R-4.4-mac | OK | Mar 03 2025 |
R-4.3-win | OK | Mar 03 2025 |
R-4.3-mac | OK | Mar 03 2025 |
Exports:assessbiasbootstrapencodedataestimateloadstateplotdistributionplotestimatesposteriormoderiskrmsesampleposteriorsavestatespatialgraphtanhlosstrain
Dependencies:JuliaConnectoRmagrittr
Introduction to NeuralEstimators
Rendered fromNeuralEstimators.html.asis
usingR.rsp::asis
on Mar 03 2025.Last update: 2024-12-01
Started: 2024-12-01
NeuralEstimators with Incomplete Gridded Data
Rendered fromNeuralEstimators_IncompleteData.html.asis
usingR.rsp::asis
on Mar 03 2025.Last update: 2024-12-01
Started: 2024-12-01
Readme and manuals
Help Manual
Help page | Topics |
---|---|
assess a neural estimator | assess |
computes a Monte Carlo approximation of an estimator's bias | bias |
bootstrap | bootstrap |
encodedata | encodedata |
estimate | estimate |
Load a saved state of a neural estimator | loadstate |
Plot the empirical sampling distribution of an estimator. | plotdistribution |
Plot estimates vs. true values. | plotestimates |
posteriormode | posteriormode |
computes a Monte Carlo approximation of an estimator's Bayes risk | risk |
computes a Monte Carlo approximation of an estimator's root-mean-square error (RMSE) | rmse |
sampleposterior | sampleposterior |
save the state of a neural estimator | savestate |
spatialgraph | spatialgraph |
tanhloss | tanhloss |
Train a neural estimator | train |